会员注册 会员登录 主办单位:国家建筑材料工业局技术图书馆 加为收藏 设为主页
1151web_logo
专注建材行业知识大数据
首页 外文期刊 中文期刊 图书馆 建材智网
您所在的位置:首页>>论文报告
A computational analysis of the impact of mass transport and shear on three-dimensional stem cell cultures in perfused micro-bioreactors
【文件类型】 【消费金额】3.6 【文章页数】12 【会员操作】  
【文章作者】Himanshu Kaul;Yiannis Ventikos;Zhanfeng Cui;
【文章摘要】      In this study, Computational Fluid Dynamics(CFD) is used to investigate and compare the impact of bioreactor parameters(such as its geometry, medium flow-rate, scaffold configuration) on the local transport phenomena and, hence, their impact on human mesenchymal stem cell(hM SC) expansion. The geometric characteristics of the TissueFlex174;(Zyoxel Limited, Oxford, UK) microbioreactor were considered to set up a virtual bioreactor containing alginate(in both slab and bead configuration) scaffolds. The bioreactor and scaffolds were seeded with cells that were modelled as glucose consuming entities. The widely used glucose medium, Dulbecco's Modified Eagle Medium(DMEM), supplied at two inlet flow rates of 25 and 100 μl·h~(-1), was modelled as the fluid phase inside the bioreactors. The investigation, based on applying dimensional analysis to this problem, as well as on detailed three-dimensional transient CFD results, revealed that the default bioreactor design and boundary conditions led to internal and external glucose transport, as well as shear stresses, that are conducive to h MSC growth and expansion. Furthermore, results indicated that the ‘top-inout' design(as opposed to its symmetric counterpart) led to higher shear stress for the same media inlet rate(25 μl·h~(-1)), a feature that can be easily exploited to induce shear-dependent differentiation. These findings further confirm the suitability of CFD as a robust design tool.
【关 键 字】
【期刊】【卷】【ISSUE】【ISSUEID】    【文章期份】2016    【发布日期】2016/3/15 0:00:00    点击率:1    打印    关闭
关于我们 公告信息 业务资费 广告合同 友情链接 购买阅读卡 在线订《水泥》
网络市场部:010-65761182 网络技术部:010-51164639  传真:010-65761182 Email:service@chinabmi.com
在线咨询:  
国家建筑材料工业局技术图书馆 京ICP备06011358号   京公网安备11010502024146