会员注册 会员登录 主办单位:国家建筑材料工业局技术图书馆 加为收藏 设为主页
1151web_logo
专注建材行业知识大数据
首页 外文期刊 中文期刊 图书馆 建材智网
您所在的位置:首页>>论文报告
Hazardous waste alternative fuels to novel ecological energy: Combustion characteristics and effects on clinker's environmental safety
【文件类型】 【消费金额】5.7 【文章页数】19 【会员操作】  
【文章作者】Wenhuan Liu;Yu Liu;Siying Wang
【文章摘要】      Due to their detrimental and persistent impacts on the environment, it is imperative to manage and dispose of hazardous wastes (HW) in a secure manner. This study investigates the combustion characteristics and environmental impacts of using HW as alternative fuels in clinker production. The HW categories analyzed include industrial hazardous waste (IHW), medical hazardous waste (MHW), and household hazardous waste (HHW). specifically, IHW consists mainly of waste mineral oils, waste organic solvents, organic resin wastes, waste residues, and waste coatings. MHW primarily consists of medical plastic products. HHW mainly includes packaging from waste pharmaceuticals, waste pesticides, disinfectants, and waste paints. Compared to traditional pulverized coal, hazardous waste alternative fuel (HWAF) exhibits a lower fixed carbon content, with its heat generation primarily dependent on volatile substances, and a higher ash content, chemically similar to coal ash. The combustion process of HWAF involves three stages: moisture evaporation (0 ℃-150 ℃), volatile matter combustion (150℃-400 ℃), and fixed carbon combustion (400 ℃-550 ℃). The primary emissions from this process include CO_2, CO, trace amounts of SO2, NO2, H2O, and various complex organic compounds such as carboxylic acids, alcohols, ketones, and aldehydes. While HWAF ignites more readily than pulverized coal, it burns more slowly and less completely. The incorporation of combustion by-products into the cement clinker formulation does not interfere with the clinker's hydration processes or reactions. HWAF ensures a reduced heavy metal input rate in the firing system without significantly impacting the heavy metal content in the clinker. Mortar samples produced with this clinker meet the heavy metal leaching standards, affirming the environmental safety of the cement product. Increasing the proportion of HWAF results in a reduction in standard coal consumption and an increase in CO_2 reduction, achieving a maximum coal saving of 3.67 kgce/t.cl and a CO_2 emission reduction of 10.11 kg/t.cl. This study presents a clean production model for the co-processing of HWAF, effectively transforming waste into valuable resources by using hazardous waste materials as alternative fuels.
【关 键 字】
【卷】【ISSUE】【ISSUEID】    【文章期份】2024    【发布日期】2025/5/13 10:02:13    点击率:0    打印    关闭
关于我们 公告信息 业务资费 广告合同 友情链接 购买阅读卡 在线订《水泥》
网络市场部:010-65761182 网络技术部:010-51164639  传真:010-65761182 Email:service@chinabmi.com
在线咨询:  
国家建筑材料工业局技术图书馆 京ICP备06011358号   京公网安备11010502024146