会员注册 会员登录 主办单位:国家建筑材料工业局技术图书馆 加为收藏 设为主页
1151web_logo
专注建材行业知识大数据
首页 外文期刊 中文期刊 图书馆 建材智网
您所在的位置:首页>>论文报告
Microstructure and Tribological Behavior of a TiO_2/hBN Composite Ceramic Coating Formed via Micro-arc Oxidation of Ti–6Al–4V Alloy
【文件类型】 【消费金额】1.8 【文章页数】6 【会员操作】  
【文章作者】Ni Ao;Daoxin Liu;Shuaixing Wang;Qing Zhao;Xiaohua Zhang;Mengmeng Zhang;
【文章摘要】      A composite coating containing hexagonal boron nitride(hBN) particles and titanium oxide(TiO_2) was formed on the surface of Ti–6Al–4V alloy via micro-arc oxidation(MAO). The effect of quantity of the hBN-particles added into electrolyte on microstructure, composition, and wear behavior of the resulting composite coatings was investigated. Microstructure, phase composition, and tribological behavior of the resulting MAO coatings were evaluated via scanning electron microscopy, X-ray diffraction, and ball-on-disc abrasive tests. The results reveal that the TiO_2/hBN composite coating consisting of rutile TiO_2, anatase TiO_2, and an hBN phase was less porous than particle-free coating. Furthermore, the presence of hBN particles in the MAO coating produced an improved anti-friction property. The composite coating produced in the electrolyte containing 2 g/L of hBN particles exhibited the best wear resistance.The outer loose layer of the MAO coatings was removed by a mechanical polishing process, which led to a significant improvement in the wear resistance and anti-friction properties of the MAO coatings and highlighted an essential lubricating role of hBN particles in the composite coatings. However, wear mechanism of the MAO coatings was not relevant to the presence of hBN particles, where fatigue wear dominated the anti-fraction properties of the MAO coatings with and without hBN particles.
【关 键 字】
【期刊】Journal of Materials Science & Technology【卷】【ISSUE】【ISSUEID】    【文章期份】2016    【发布日期】2017/2/18 0:00:00    点击率:1    打印    关闭
关于我们 公告信息 业务资费 广告合同 友情链接 购买阅读卡 在线订《水泥》
网络市场部:010-65761182 网络技术部:010-51164639  传真:010-65761182 Email:service@chinabmi.com
在线咨询:  
国家建筑材料工业局技术图书馆 京ICP备06011358号   京公网安备11010502024146